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Abstract

This paper considers symmetry in games with more than two players. It is often
noted that a two-player game is symmetric if it looks the same to both players. However,
when there are more than two players, the most common definition of a symmetric game
requires more than that the game looks the same to all of its players. Previous authors
have established that games which are symmetric in the common sense have a number
of useful properties. With few exceptions, those properties continue to hold in the richer
class of games that look the same to all players.
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1 Introduction

This paper considers symmetry in games with more than two players. For games with
just two players, the concept of symmetry is broadly understood. (A two-player game is
symmetric if both players share the same strategy space and if the players swap strategies,
then they swap payoffs.) For games with more than two players, the matter is not so clear.
There are a number of different ways in which the standard definition of a symmetric two-
player game may be extended to games with more than two players. A two-player game is
symmetric if it looks the same to both players. This paper investigates the class of n-player
games that look the same to all players. The common definition of a symmetric n-player
game excludes many games in that more general class, including some prominent economic
models. Previous authors have established that games which are symmetric in the common
sense have a number of useful properties. With few exceptions, those useful properties
continue to hold in games that are symmetric in the more general sense that they look the
same to all players.
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The following two games are symmetric in different senses. Both games are simplified
oligopoly models in which each of the firms simultaneously chooses a price between zero
and one. Supposing production is costless, each firm’s payoff is equal to its price times its
demand.

• In the first model, each firm’s demand is equal to one minus the firm’s own price, plus
the average price of the other firms.

• The second model is a version of Salop’s model of price competition in a circular city.
Each firm’s demand is equal to one minus the firm’s own price, plus the average price
of the two adjacent firms.

Notice that when there are just two firms, the two models coincide with one another, and
with a version of Hotelling’s model of price competition in a linear city: each firm’s demand
is equal to one minus the firm’s own price, plus the other firm’s price. The two-player game
is symmetric in the well known sense: for any pair of prices (x, y), the payoff of firm 1 when
he sets price x and his rival sets price y is the same as the payoff of firm 2 when she sets
price x and her rival sets price y. The two models also coincide in the case of three firms.

When there are four or more firms, the two models differ, and they are symmetric in
different senses. The first model is symmetric in the common sense. The second model is
not symmetric in the common sense, though it clearly possesses some aspects of symmetry.

The first model is totally symmetric: every permutation of the players preserves the
payoff structure of the game. (Many authors simply refer to games satisfying that condition
as symmetric, but this paper follows von Neumann and Morgenstern (1953) in referring to
such games as totally symmetric.) Total symmetry has been the most commonly considered
concept of symmetry in n-player games.

In the second model, not every player permutation preserves the payoff structure, but
some do. In that model, a permutation preserves the payoff structure if it preserves the
identity of each firm’s neighbors. A rotation of the circle that maps player i to player j, i+1

to j + 1, and so on, does preserve the payoff structure of the game. A transposition of any
two firms does not preserve the payoff structure, if there are four or more firms in total.

The second model is weakly symmetric: for each pair of players i and j, there exists a
permutation of all the players that maps player i to player j and preserves the payoff structure
of the game. As noted by von Neumann and Morgenstern, the set of player permutations
that preserve the payoff structure of a game forms a group, the symmetry group. In the
language of group theory, a game is weakly symmetric if its symmetry group has a single
orbit, which contains the entire set of players.1 Thus weak symmetry formalizes the natural

1Fix some player i. Permutations in the symmetry group map i to various other players. The orbit of
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idea that “a symmetric game is one that looks the same to all the players” (Binmore, 2007).2

A number of works in applied game theory consider models that are weakly symmetric
but not totally symmetric. Perhaps the most prominent example is the model of price com-
petition in a circular city popularized by, and often attributed to, Salop (1979). A closely
related model was developed earlier by Vickrey in 1964 (reprinted in Vickrey, Anderson,
and Braid, 1999). Salop’s model has been extended by later authors, including Grossman
and Shapiro (1984) who consider competition in both price and advertisement. The afore-
mentioned models all share the rotational symmetry of a circle. A model may be weakly
symmetric without such rotational symmetry: a prominent example is the model of elimi-
nation tournaments developed by Rosen (1986, section III). A more recent example is the
model of price competition on a network developed by Ushchev and Zenou (2016).3

Symmetry is encountered frequently in pure and applied game theory. A two-player game
is symmetric if it looks the same to both players. However, in a game with more than two
players, the common definition of symmetry, that is total symmetry, requires more than that
the game looks the same to all of its players, that is weak symmetry. Previous authors have
established that totally symmetric games have a number of useful properties. This paper
shows that, with few exceptions, those useful properties continue to hold in the richer class
of weakly symmetric games.

A basic property of totally symmetric games is that if in some symmetric strategy profile
one player cannot profitably deviate, then no player can profitably deviate, so the profile is a
symmetric equilibrium. A number of authors have used this property to establish conditions
under which totally symmetric games have symmetric equilibria. This paper shows that the
basic property continues to hold in weakly symmetric games, and consequently the previous
results establishing existence of symmetric equilibria in totally symmetric games continue to
hold in weakly symmetric games.

A second basic property of totally symmetric games is that they are fair in the sense that
for every pair of players i and j, if there is an equilibrium where player i gets some payoff
v, then there is another equilibrium where j gets the same payoff v. One implication of this
property is that in a totally symmetric, supermodular game, the minimal and maximal equi-
libria are symmetric (Milgrom and Roberts, 1990); a fact which in turn has multiple useful

player i is the set of players that may be reached in that way. Weak symmetry says that all players may
be reached in that way, so the orbit of each player is the entire set of players. This is discussed formally in
footnote 10.

2While Binmore states that informal idea, and defines symmetric two-player games, he does not state a
formal definition for symmetric games with more than two players.

3They show that if the network is vertex-transitive, then a symmetric equilibrium exists in their model.
Their model is weakly symmetric if and only if the network is vertex-transitive. More generally, a network
game is weakly symmetric if and only if the network is vertex-transitive.
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applications. This paper shows that weakly symmetric games have the same basic fairness
property, and consequently the same implication holds for weakly symmetric, supermodular
games.

A third basic property of totally symmetric games is that the symmetry-invariance cri-
terion popularized by Harsanyi and Selten (1988) selects only symmetric strategy profiles in
such games. Thus not only do symmetric equilibria exist in totally symmetric games, but
there is an argument to be made for focusing on those equilibria in such games. This paper
shows that weak symmetry is both sufficient and necessary for this third basic property.

Previous authors have established that totally symmetric games have a number of ad-
ditional properties, which, this paper shows, continue to hold in weakly symmetric games.
This paper finds one basic property of totally symmetric games that does not continue to
hold in weakly symmetric games:

Total symmetry is related to anonymity. Following Blonski (2000), say that a game is
anonymous if for each trio of distinct players i, j and k, swapping the strategies of players
i and j does not affect the payoff of player k. Total symmetry requires anonymity, whereas
weak symmetry does not. In fact, total symmetry is equivalent to the combination of weak
symmetry and anonymity, as shown in this paper. As just discussed, in many instances where
total symmetry has been assumed, weak symmetry would suffice. Equivalently, in many
instances where total symmetry has been assumed, the indirect assumption of anonymity
is superfluous. While that is true in many instances, it is not true regarding the following
property.

A fourth basic property of totally symmetric games follows. Beginning with an n-player
games, fix the strategies of all but two players, and consider the resulting game played by the
remaining two players. If the original n-player game is totally symmetric, then the resulting
two-player game is symmetric. Relating to that property, Amir (1996) and Hefti (2017)
establish conditions under which totally symmetric games have only symmetric equilibria.
That basic property does not continue to hold in weakly symmetric n-player games; for
that property, the additional assumption of anonymity is necessary. Consequently, weakly
symmetric games may have asymmetric equilibria under conditions where totally symmetric
games have only symmetric equilibria.

von Neumann and Morgenstern (1953, section 28) give a general discussion of symmetry
in n-player games in normal form. Their discussion provides a foundation for the concept
of weak symmetry considered in this paper. As they note, “a real understanding of the
nature and structure of symmetry is not possible without some familiarity with (at least)
the elements of group theory.” While von Neumann and Morgenstern do not explicitly
mention weak symmetry, to a reader familiar with their discussion of symmetry in games,
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and the theory of permutation groups, the concept of weak symmetry is readily apparent.
Recall, the set of player permutations that preserve the payoff structure of a game forms a
group, the symmetry group. A game is weakly symmetric if its symmetry group has a single
orbit, which contains the entire set of players. Equivalently, a game is weakly symmetric if
its symmetry group is transitive, which is a commonly considered condition in group theory.
An n-player game is totally symmetric if its symmetry group is n�transitive, which is a
stronger condition.

It seems that von Neumann and Morgenstern’s discussion of symmetry in n-player games
was largely overlooked by later authors who beginning in the 1980s reconsidered that topic.
However, there are two papers before this one that briefly consider implications of weak
symmetry:

Maynard-Smith defines evolutionarily stable strategies for two-player symmetric games.
Palm (1984) extends that definition to arbitrary n-player games. He notes that his definition
reduces to a simpler one in the case where the game is totally symmetric. He briefly mentions
that his definition reduces in the same way when instead the game satisfies the property of
weak symmetry.

Peitz (1999) investigates equilibrium uniqueness in symmetric, supermodular games. He
notes that there are versions of Salop’s circle model that are not totally symmetric, but
do satisfy a weaker concept of symmetry. That weaker concept of symmetry is not made
entirely precise, but seems to coincide with the concept of weak symmetry considered in this
paper. Peitz argues that a particular property previously established for totally symmetric,
supermodular games, continues to hold under his weaker concept of symmetry.4

Reny (1999) establishes general conditions for equilibrium existence in discontinuous
games. In addition, he establishes conditions for the existence of symmetric equilibria in
games that have “enough symmetry.” For that purpose, he proposes quasi-symmetry, which
is weaker than weak symmetry. He shows that quasi-symmetry may be used to establish the
existence of symmetric equilibria in pure strategies. Reny mistakenly suggests that quasi-
symmetry may be similarly used to establish the existence of symmetric equilibria in mixed
strategies. As this paper shows in section 4, weak symmetry implies quasi-symmetry of the
game’s mixed extension, which in turn is sufficient for Reny’s purpose, and several others.

Section 2 introduces weak symmetry and describes its relationship to total symmetry.
Sections 3 and 4 establish implications of weak symmetry. Section 5 describes a further
implication of total symmetry. Section 6 concludes.

4See the discussion in footnote 15.
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2 Weak and total symmetry

This section introduces weak symmetry and describes its relationship to the most common
concept of symmetry in n-player games, that is total symmetry. In two-player games, the
two concepts of symmetry coincide. More generally, total symmetry is equivalent to the
combination of weak symmetry and an additional condition known as anonymity. There are
prominent economic models that satisfy weak symmetry but not anonymity, and thus not
total symmetry. The following sections show that for many results where total symmetry
has previously been assumed, weak symmetry would suffice instead.

Consider a game, in strategic (or normal) form (Fudenberg and Tirole, 1991). Such a
game consists of three elements: a finite set of players I = {1, 2, ..., n}, and for each player
i 2 I a pure-strategy space Si, and a payoff function ui : S ! R, where S = ⇥i2ISi. When
considering mixed strategies, suppose that S is finite, and that each player seeks to maximize
her expected payoff.

A two-player game is symmetric if S1 = S2 and for all pairs of strategies (x, y) 2 S2
1 ,

u1(x, y) = u2(y, x).5 This paper regards the generalization of that standard definition of
symmetry to games with more than two players. Every concept of symmetry considered
here requires that the players share a common strategy space, but the different concepts of
symmetry impose different restrictions on the profile of payoff functions.

A permutation ⇡ on the set of players is a bijection ⇡ : I ! I. Following von Neumann
and Morgenstern (1953, section 28), say that a game is symmetric with respect to a permu-
tation ⇡ if Si = S⇡(i) for all players i, and the permutation preserves the payoff structure of
the game in the following sense,

u⇡(i)(s1, ..., sn) = ui(s⇡(1), ..., s⇡(n)) for all s 2 S and i 2 I.

5von Neumann and Morgenstern (1953) state that definition in the case where the game is zero-sum.
The extension to the general-sum case is straightforward, and is given, for example, by van Damme (1991)
in bimatrix games. Osborne and Rubinstein (1994, Exercise 20.4) state the analogous definition for two-
player, ordinal games (ordinal games are defined in terms of the players preferences rather than their payoff
functions).

This is the standard concept of symmetry in two-player games, but there exist other, more general, concepts
of symmetry for such games, see for example Cao and Yang (2016) and the references therein. The present
paper could begin with a more general concept of symmetry in two-player games and then consider further
generalization of that concept from two-player games to n-player games. In that case, instead of considering
von Neumann and Morgenstern’s concept of the symmetries of a game, one would consider Nash’s (1951)
more general concept of its symmetries, or Harsanyi and Selten’s (1988) still more general concept of the
automorphisms of a game. Beginning instead with this standard definition of a symmetric, two-player game,
and von Neumann and Morgenstern’s concept of the symmetries of a game, substantially simplifies the
exposition of this paper.
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If a game is symmetric with respect to ⇡, say that ⇡ is a symmetry of the game. As
von Neumann and Morgenstern emphasize, the set of such symmetries forms a group, the
symmetry group.6 In particular, if ⇡ is a symmetry of the game, then so is its inverse ⇡�1,
and if in addition ⇠ is a symmetry of the game, then so is the composition ⇡ � ⇠.

As von Neumann and Morgenstern remark, a game may be symmetric with respect to
some but not all of the player permutations. The common definition of a symmetric, n-player
game is at the upper extreme:

Definition. A game is totally symmetric if it is symmetric with respect to every permutation
⇡ on I.

Following Dasgupta and Maskin (1986), many authors simply refer to such games as
“symmetric games.” Following instead von Neumann and Morgenstern (1953) and Palm
(1984), this paper specifically refers to such games as “totally symmetric games.” (Separately,
note that Dasgupta and Maskin’s often-repeated definition of a symmetric game is not quite
correct.7)

This paper investigates the following more general concept of symmetry in n-player
games.

Definition. A game is weakly symmetric if for each pair of players i and j, the game is
symmetric with respect to some permutation ⇡ on I where ⇡(i) = j.

Equivalently, a game is weakly symmetric if for each player i, the game is symmetric with
respect to some permutation ⇡ where ⇡(i) = 1.8

6In general, a symmetry of some structured object is a transformation of that object that preserves its
structure. The set of such symmetries of an object, here a game, form a group, referred to as the symmetry
group. A group is a set of elements, here permutations of I, together with an operation, here composition,
that satisfies the four group axioms: Here (1) the group of symmetries is closed under inversion, (2) the group
of symmetries is closed under composition, (3) the identity map is a symmetry, and (4) the composition of
symmetries is associative.

For games, the transformations considered here, and by von Neumann and Morgenstern, are permutations
and the symmetry group is specifically a permutation group. Dixon and Mortimer (1996) is a standard
reference on permutation groups.

7They say that a game is symmetric if ui(s) = u⇡(i)(s⇡(1), ..., s⇡(n)) for all s 2 S, i 2 S and permutations
⇡ : I ! I. Notice that here ui is on the left and u⇡(i) is on the right. von Neumann and Morgenstern (1953,
p256 fn4) explicitly caution that this statement of symmetry is incorrect. (Given their lengthy discussion of
the issue, it seems likely that Morgenstern or von Neumann had earlier made the error that Dasgupta and
Maskin later repeat, but I do not find written evidence of that. von Neumann and Morgenstern give the
correct statement of symmetry in the original 1944 edition.) In two-player games, Dasgupta and Maskin’s
definition of symmetry is equivalent to the standard one. However, in games with three or more players, their
definition implies that the game is not only totally symmetric, but it is also a game of common interest, so
ui(s) = uj(s) for all i, j and s. That has been established independently by Vester (2012) and Ham (2013).
From the discussion in Dasgupta and Maskin’s companion paper, it is clear that they did not intend that a
symmetric game is one of common interest.

8Clearly the general definition implies the special case where j = 1. To see the converse, suppose that
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In two-player games, weak and total symmetry coincide with one another and the stan-
dard definition of a symmetric, two-player game.9 In games with three or more players, total
symmetry implies weak symmetry, but not the converse. Total symmetry requires that the
game is symmetric with respect to every permutation while weak symmetry requires only
that it is symmetric with respect to a sufficiently broad subset of permutations.

In the language of group theory: A game is weakly symmetric if its symmetry group
is transitive. Equivalently, a game is weakly symmetric if its symmetry group has a single
orbit, which contains the entire set of players.10 Thus weak symmetry formalizes the natural
idea that “a symmetric game is one that looks the same to all the players” (Binmore, 2007).

Example (Circular prisoner’s dilemma). The symmetric, two-player prisoner’s dilemma may
be extended to an n-player game that is totally symmetric. It may also be extended to a
different n�player game that is weakly symmetric but not totally symmetric.

Begin with the following two-player prisoner’s dilemma. Each of the two players simul-
taneously chooses an action ai 2 {0, 1}. The payoff of player i is �ai +2aj, where j denotes
the other player.

The two-player game may be extended to a totally symmetric, n-player game: Each
player’s strategy space is {0, 1} as before. The payoff of player i is now �ai plus two times
the average of the other players’ actions, that is ui(a) = �ai +

2
n�1

P
j 6=i aj.

The two-player game may also be extended to a weakly symmetric, n-player game: the
“circular prisoner’s dilemma.” Each player’s strategy space is {0, 1} as before. Let ⇢ : I ! I

be the permutation where ⇢(1) = 2, ⇢(2) = 3, ..., ⇢(n� 1) = n, ⇢(n) = 1. This permutation
⇢ is called a rotation (or a circular shift). The payoff of player i is now ui(a) = �ai +2a⇢(i).
In the case where n = 3, the payoff functions are as follows.

u1(a) = �a1 + 2a2

u2(a) = �a2 + 2a3

u3(a) = �a3 + 2a1

the game is symmetric with ⇡ and ⇢ where ⇡(i) = 1 and ⇠(j) = 1. Then the game is symmetric with respect
to the permutation ⇠�1 � ⇡. Note ⇠�1(⇡(i)) = j as desired.

9When n = 2, there are only two permutations on I: the identity which maps player 1 to 1 and 2 to 2,
and the transposition which maps 1 to 2 and 2 to 1. Every game is symmetric with respect to the identity.
In two-player games, both weak and total symmetry simply require that the game is also symmetric with
respect to the transposition of 1 and 2.

10Let � denote the group of symmetries of the game. That � is transitive means that for each i and j there
exists ⇡ 2 � such that ⇡(i) = j. (Transitivity is the condition stated in my definition of a weakly symmetric
game.) The orbit of player i is the set of players {j 2 I : 9⇡ 2 � such that j = ⇡(i)}. Notice � is transitive
if and only if the orbit of each player is the entire player set I. (Dixon and Mortimer (1996) is an excellent
text on the theory of permutation groups. They describe transitivity and orbits as here on their page 8.)
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In a game with three players, there are six permutations of the player set. Three of those
permutations are transpositions of two players. This game is not symmetric with respect
to any of the three transpositions, so it is not totally symmetric.11 A fourth permutation
is the identity map on I, which is a symmetry of every game. The last two permutations
are the aforementioned rotation ⇢ and the double rotation ⇢ � ⇢. This game is symmetric
with respect to the rotation ⇢, so it is also symmetric with respect to the composition of ⇢
with itself, that is the double rotation. The single rotation maps player 3 to 1. The double
rotation maps player 2 to 1. Thus the game is weakly symmetric.

The prisoner’s dilemma may be interpreted as a game of pollution externalities, where
the action 1 means pollute and the action 0 means abate. The two-player prisoner’s dilemma
may be interpreted as such a game between two nations. The circular prisoner’s dilemma
may then be interpreted as a game of airborne pollution externalities between a number of
nations located around the equator, where the wind blows from East to West, so that each
nation is affected by the pollution emitted by its neighbor to the East.

The circular prisoner’s dilemma is rotationally symmetric: it is symmetric with respect
to the aforementioned rotation ⇢.

Rotational symmetry implies weak symmetry, but not the converse. Recall the famous
model of price competition in a circular city popularized by Salop (1979). That model is
rotationally symmetric and thus weakly symmetric. The same is true in related models
including Grossman and Shapiro (1984). With four or more firms, these circular-city models
are not totally symmetric. (Unlike the circular prisoner’s dilemma, Salop’s circle model also
has reflectional symmetry: it is symmetric with respect to the reflection ⇡ where ⇡(i) =

n + 1� i .) A game may be weakly symmetric without being rotationally symmetric, as in
the following example, which is a simplified version of the model of elimination tournaments
developed by Rosen (1986).

Example (A four-player, two-stage elimination tournament). Consider first a symmetric,
two-player Tullock contest. Each of the two players, 1 and 2, simultaneously chooses an
effort level ai 2 [0,1). One of the two players wins the contest and receives a prize of value
v. The probability that player 1 wins is a1/(a1 + a2). The payoff of the winning player i is
v � ai, while the payoff of the losing player j is �aj. This is a symmetric, two-player game.

Now consider a four-player game where players 1 and 2 engage in the previous Tullock
contest, and players 3 and 4 simultaneously engage in a separate but identical contest. This
game is weakly symmetric but not totally symmetric. (It is not symmetric with respect to

11For example, consider the transposition of players 1 and 2: ⌧(1) = 2, ⌧(2) = 1, and ⌧(3) = 3, the strategy
profile (0, 0, 1), and the player i = 1. Notice u⌧(1)(s) = u2(0, 0, 1) = 2 6= 0 = u1(0, 0, 1) = u1(s⌧(1), ..., s⌧(n)).
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the transposition of players 1 and 3. It is symmetric with respect to the transposition of
players 1 and 2, and with respect to the transposition of players 3 and 4. It is also symmetric
with respect to the permutation that interchanges the pair (1, 2) with the pair (3, 4), that is
the permutation ⇡ where ⇡(1) = 3, ⇡(2) = 4, ⇡(3) = 1 and ⇡(4) = 2.)

This may be extended to a four-player, two-stage game, which is an elimination tourna-
ment. The first stage is the same as the four-player game above, but the two winners in the
first stage, instead of immediately receiving a prize of value v, move on to the second stage.
The second stage is the two-player Tullock contest that was initially considered. The two
losers in the first stage have no role in the second stage. Again this is a weakly symmetric
game, which has the same symmetry group as above.

This elimination tournament is a simplified version of the weakly symmetry tournament
that Rosen considers in his section III. (In that section, he considers more generally a weakly
symmetric tournament with n stages and 2

n homogeneous contestants. In his section IV, he
considers a version with heterogeneous contestants, which is not symmetric.)

Total symmetry is related to the anonymity condition considered by Blonski (2000). A
game has a common strategy space if S1 = Sj for each player j.

Definition. A game with a common strategy space is anonymous if for each player i, the
following is true. For all permutations ⇡ on I where ⇡(i) = i,

ui(s) = ui(s⇡(1), ..., s⇡(n)) for all s 2 S.

Equivalently, a game with a common strategy space is anonymous if for all distinct trios
of players i, j and k, and strategy profiles s, swapping the strategies of players i and j does
not affect the payoff of player k. For example, Cournot’s model of competition in quantities
is anonymous. The definition of anonymity may be extended to games without a common
strategy space.12

Theorem 1. Total symmetry is equivalent to the combination of weak symmetry and anonymity.13

Proof. That total symmetry implies weak symmetry is clear. Similarly, that total symmetry
implies anonymity. Here I prove that weak symmetry and anonymity imply total symmetry.

12A game is anonymous if for each player i, the following is true. For all permutations ⇡ such that ⇡(i) = i,
ui(s) = ui(s⇡(1), ..., s⇡(n)) for all s 2 S such that (s⇡(1), ..., s⇡(n)) 2 S. Every two-player game trivially meets
this condition, whether or not the game has a common strategy space. (That is true because in a two-player
game, for any fixed i, the only permutation where ⇡(i) = i is the identity.)

13Ham (2013, Theorem 3.15) similarly asserts that “full symmetry” is equivalent to the combination
of “standard symmetry” and “weak anonymity.” However, his proof that standard symmetry plus weak
anonymity implies full symmetry is incorrect. Following correspondence between him and me, Ham has
independently developed a revised proof of his theorem, which may appear in a future version of his paper.
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To establish total symmetry, I must show that for every s, i and ⇡, u⇡(i)(s) = ui(s⇡(1), ..., s⇡(n)).
Fix some s, i and ⇡.

(1) Let j = ⇡(i). Weak symmetry implies that there exists some permutation ⇠ where
⇠(i) = j = ⇡(i) such that

u⇡(i)(s) = u⇠(i)(s) = ui(s⇠(1), ..., s⇠(n)).

(2) Anonymity implies that for any permutation ↵ such that ↵(⇠(i)) = ⇠(i),

ui(s⇠(1), ..., s⇠(n)) = ui(s↵(⇠(1)), ..., s↵(⇠(n))).

(Notice that on the left hand side, player i is playing s⇠(i). On the right hand she is playing
s↵(⇠(i)), which is the same as on the left.)

(3) Now set ↵ = ⇡ � ⇠�1, so ↵(⇠(j)) = ⇡(j) for all j. Note that ↵(⇠(i)) = ⇡(i) = ⇠(i), as
was assumed in the previous step (2).

Combining the previous three steps yields u⇡(i)(s) = ui(s⇡(1), ..., s⇡(n)) as desired.

Every two-player game is trivially anonymous. So the previous proposition implies that
in two-player games, total and weak symmetry are equivalent.

In games with three or more players, total symmetry requires anonymity, whereas weak
symmetry does not. Consequently, total symmetry restricts u1, whereas weak symmetry
does not, in the following sense. In a two-player game, symmetry does not restrict u1: for
any function � : S2

1 ! R there exists a symmetric two-player game where u1 = �. Similarly,
in an n-player game, weak symmetry does not restrict u1: for any � : Sn

1 ! R there exists a
weakly symmetric, n-player game where u1 = �.14 On the other hand, total symmetry does
restrict u1 if n � 3: it requires that u1 satisfies the condition of anonymity. For example,
total symmetry requires that swapping the strategies of players 2 and 3, does not affect the
value of u1.

A number of previous authors have established various properties of totally symmetric
games. Many of those properties continue to hold in the richer class of weakly symmetric
games, as shown in the next two sections.

14For any such �, there exists a rotationally symmetric game where u1(s) = �(s), u2(s) =
�(s2, s3, ..., sn, s1), u3(s) = �(s3, s4, ..., sn, s1, s2) and so on. Recall rotational symmetry implies weak sym-
metry.
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3 Implications of weak symmetry

This section describes some implications of weak symmetry, and of symmetries in games more
generally. Weakly symmetric games are fair in a sense, which has further implications for
supermodular games. In weakly symmetric games, the equilibrium selection criterion known
as symmetry-invariance selects only symmetric equilibrium. Furthermore, weak symmetry
is not only sufficient for that property, but is also in a sense necessary.

It is well known that in a totally symmetric game, if s⇤ is an equilibrium, then every
permutation of s⇤ is also an equilibrium, and if v⇤ is an equilibrium payoff profile, then
every permutation of v⇤ is also an equilibrium payoff profile. A related property holds for
weakly symmetry games. Both properties follow from the following more fundamental result
regarding games with symmetries.

In every game, the set of equilibria is symmetry-invariant, and the set of equilibrium
payoff profiles is similarly symmetry-invariant, in the following sense.

Theorem 2. Consider an n-player game that is symmetric with respect to some player
permutation ⇡.

(a) If s⇤ 2 S is an equilibrium, then (s⇤⇡(1), ..., s
⇤
⇡(n)) is also an equilibrium.

(b) If v⇤ 2 Rn is an equilibrium payoff profile, then (v⇤⇡(1), ..., v
⇤
⇡(n)) is also an equilibrium

payoff profile.

The theorem is stated for equilibria in pure strategies, but notice that it immediately
extends to equilibria in mixed strategies, because if ⇡ is a symmetry of the game, then ⇡ is
also a symmetry of the game’s mixed extension.

Proof. (a) That s⇤ is an equilibrium means that for each player i, ui(s
⇤
) � ui(si, s

⇤
�i) for all

si 2 Si.
To show that (s⇤⇡(1), ..., s

⇤
⇡(n)) is also an equilibrium, it suffices to show that for each

player j, and for each sj 2 Sj, uj(s
⇤
⇡(1), ..., s

⇤
⇡(n)) � uj(sj, s

⇤
⇡(�j)), where (sj, s

⇤
⇡(�j)) denotes

the strategy profile formed by replacing player j’s strategy in the profile (s⇤⇡(1), ..., s
⇤
⇡(n)) with

the alternative strategy sj.
Let i = ⇡(j). Noting that then Si = Sj, let si = sj. Then

uj(s
⇤
⇡(1), ..., s

⇤
⇡(n)) = ui(s

⇤
) � ui(si, s

⇤
�i) = uj(sj, s

⇤
⇡(�j))

as desired. Here the two equalities are true because ⇡ is a symmetry and i = ⇡(j), and the
inequality is true because s⇤i is a best response for player i to s⇤.
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(b) Suppose v⇤ is an equilibrium payoff profile, so there exists an equilibrium s⇤ such
that u(s⇤) = v⇤. Part (a) established that (s⇤⇡(1), ..., s

⇤
⇡(n)) is also an equilibrium. Notice

ui(s
⇤
⇡(1), ..., s

⇤
⇡(n)) = u⇡(i)(s

⇤
) = v⇤⇡(i) by symmetry. So u(s⇤⇡(1), ..., s

⇤
⇡(n)) = (v⇤⇡(1), ..., v

⇤
⇡(n)) as

desired.

A totally symmetric game is symmetric with respect to every player permutation. In that
case the previous theorem yields the aforementioned property that if s⇤ is an equilibrium,
so is every permutation of s⇤. In a weakly symmetric game, it instead yields the following
related property.

Corollary 3. Consider a weakly symmetric game. Let i and j be any pair of players.
(a) If s⇤ is an equilibrium, then there exists another equilibrium s⇤⇤ where s⇤⇤j = s⇤i , and

s⇤⇤ is a permutation of s⇤.
(b) If v⇤ is an equilibrium payoff profile, then there exists another equilibrium payoff

profile v⇤⇤ where v⇤⇤j = v⇤i , and v⇤⇤ is a permutation of v⇤.

Thus weakly symmetric games, like totally symmetric games, are fair in the sense that if
there is an equilibrium where player i gets payoff µ then there is also an equilibrium where
player j gets payoff µ.

Proof. Fix some pair of players i and j. That the game is weakly symmetric means that it
is symmetric with respect to some permutation ⇡ where ⇡(i) = j.

(a) Let s⇤⇤ = (s⇤⇡(1), ..., s
⇤
⇡(n)). The previous theorem established that s⇤⇤ is an equilibrium.

Note s⇤⇤j = s⇤⇡(j) = s⇤i , as desired.
(b) Suppose v⇤ = u(s⇤). Let v⇤⇤ = u(s⇤⇤). Again v⇤⇤j = v⇤i as desired.

The fairness property has additional implications in supermodular games. Topkis showed
that in any supermodular game, the set of equilibria (in pure strategies) has a largest element
and a smallest element. That is, such a game has extremal equilibria s and s, where s �
s⇤ � s for each equilibrium s⇤. Milgrom and Roberts (1990) observe that if a supermodular
game is totally symmetric, then its extremal equilibria are both symmetric. So if a totally
symmetric, supermodular game has only one symmetric equilibrium, then that is the unique
equilibrium, symmetric or otherwise.15 The same remains true more generally in totally

15Milgrom and Roberts further establish that in a supermodular game, the extremal equilibria bound each
players serially undominated strategies. It follows that if a totally symmetric, supermodular game has a
unique symmetric equilibrium in pure strategies, then the game is dominance solvable. (They state that as
the third corollary after their Theorem 5.)

Peitz argues that the aforementioned property holds for a more general concept of symmetry, which he
refers to as “local symmetry.” Peitz (1999, Proposition 2) states “Any locally symmetric, ordinal supermod-
ular game with a single symmetric equilibrium candidate has a unique pure strategy Nash equilibrium and
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symmetric games with strategic complementarities (Vives, 2005). The present paper shows
that the same remains true replacing the assumption of total symmetry with the more general
assumption of weak symmetry:

Corollary 4. If a game with strategic complementarities is weakly symmetric, then its ex-
tremal equilibria s and s are both symmetric.

Again, it follows that if a weakly symmetric game with strategic complementarities has
just one symmetric equilibrium, then that is the unique equilibrium.

Proof. Recall that a game with strategic complementarities, such as a supermodular game,
has extremal equilibria.

Claim: If a weakly symmetric game has a largest equilibrium s, then si = sj for each
pair of players i and j.

Because s is an equilibrium, by the previous corollary, there exists another equilibrium
s⇤⇤ such that s⇤⇤j = si. Then s � s⇤⇤ implies sj � s⇤⇤j = si. Considering the pair (j, i) rather
than the pair (i, j) similarly implies si � sj. Thus si = sj, as desired.

The argument for the smallest equilibrium s is similar.

In totally symmetric games, there is a common argument for focusing on symmetric
equilibria. That argument holds equally in weakly symmetric games. As Kreps (1990)
suggests, “if the game is symmetric... both we and the players involved might find asymmetric
equilibria somewhat unintuitive.” That suggestion reflects an equilibrium selection criterion,
symmetry-invariance, which was introduced by Nash (1951) and extended and popularized
by Harsanyi and Selten (1988). Symmetry-invariance has the same implications for weakly
symmetric games as for totally symmetric games.

A strategy profile � is symmetric if �i = �j for all players i and j. A strategy profile �
is symmetry-invariant if for each symmetry ⇡ of the game, (�1, ..., �n) = (�⇡(1), ..., �⇡(n)).16

is dominance solvable.” Defining local symmetry, Peitz writes an oligopoly “game is called locally symmetric

if for any pair of firms’ indices (a, b) there exists a permutation of firms’ indices such that for all prices the
profits of any firm i become the profits of some firm j after permutation and in particular firm a’s profits
become firm b’s profits.”

It seems that what Peitz has in mind is weak symmetry, though his definition is not entirely precise.
However, in the proof of his proposition 2, Peitz makes a claim that is not quite true under the assumption
of weak symmetry, but would be true given a more restrictive concept of symmetry. (That is the claim “...
Any such permutation is an equilibrium.”)

16The present paper, like von Neumann and Morgenstern, considers transformations of the game that
rearrange the players. Nash considered transformations that both rearrange the players and the strategy
spaces, and Harsanyi and Selten considered transformations that additionally rescale the payoff functions.
What this paper calls a symmetry of the game, Nash would also call a symmetry of the game, but by Nash’s
definition there may be additional symmetries. However, typically, weakly or totally symmetric games do
not have symmetries in Nash’s sense that are not symmetries in the sense considered here.
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Of course, if a strategy profile is symmetric, then it is symmetry-invariant. It is known that
the converse is true in totally symmetric games. Palm (1984) remarks that it remains true
in weakly symmetric games. In fact, weak symmetry is not only sufficient but also necessary
for that important property:

Theorem 5. Consider a game that has at least two distinct strategy profiles. The set of
symmetric strategy profiles coincides with the set of symmetry-invariant strategy profiles if
and only if the game is weakly symmetric.

Proof. In any game, symmetry of � implies symmetry-invariance of �.
Claim: If the game is weakly symmetric, then symmetry-invariance implies symmetry.
Consider a weakly symmetric game. Fix any pair of players i and j. There exists a

symmetry ⇡ such that ⇡(i) = j. If � is symmetry-invariant, then �i = �⇡(i) = �j, as desired.
Claim: If the game is not weakly symmetric and it has two distinct strategy profiles,

then there exists a strategy profile that is symmetry-invariant but not symmetric.
Let � denote the group of symmetries of the game. Let O(i) = {⇡(i) : ⇡ 2 �} be the

orbit of player i. The collection of orbits {O(i) : i 2 I} forms a partition of the set of players
I. A game is weakly symmetric if and only if there is a single orbit. All players who share an
orbit, share the same strategy space. A strategy profile is symmetry-invariant if all players
who share the same orbit, play the same strategy.

That the game is not weakly symmetric means that it has at least two distinct orbits.
Suppose the game has m � 2 orbits. Choose a representative player from each orbit, that
is choose m players i1, ..., im such that {O(i1), ..., O(im)} is a partition of I. For each rep-
resentative player k = {1, ...,m} choose a strategy sik 2 Sik . Form the symmetry-invariant
strategy profile where si = sik if i 2 O(ik). If it is not symmetric then we are done. Sup-
pose instead it is symmetric. That the game has two distinct strategy profiles means that
there is some player j that has at least two distinct strategies, so j has some strategy that
is distinct from the current strategy sj. Replace sj with that other strategy, and similarly
replace the strategy of every player in j’s orbit with that other strategy. The new strategy
profile remains symmetry-invariant, but is no longer symmetric.

Nash showed the following.

Theorem (Nash (1951, Theorem 2)). Any finite game has a symmetry-invariant equilibrium
in mixed strategies.17

17Nash’s Theorem 2 states verbatim “Any finite game has a symmetric equilibrium point.” A point of
potential confusion is that Nash when writes “symmetric” with respect to a strategy profile, he means what
is now meant by “symmetry-invariant.” Of course the meanings of these two coincide in symmetric games.
(Varian writing is 1980 is an early example where, regarding a strategy profile, “symmetric” is used in the
modern sense rather than the sense of Nash.)
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A corollary to Nash’s theorem is that every finite, totally symmetric game has a symmetric
equilibrium in mixed strategies. It seems that this corollary was known to Nash, but he did
not explicitly state it.18 That result was later independently proven by Dasgupta and Maskin
(1986, Lemma 6).19 In fact, the corollary remains true under weak symmetry:

Corollary 6. Any finite, weakly symmetric game has a symmetric equilibrium in mixed
strategies.

That is true because in a weakly symmetric game, just as in a totally symmetric game,
every symmetry-invariant strategy profile is symmetric.

This section has established two main results for games with symmetries, and applied
them to weakly symmetric games. The next section shows that weak symmetry implies an
alternative condition, quasi-symmetry, and establishes implications of quasi-symmetry.

4 Implications of quasi-symmetry

This section considers an alternative condition, quasi-symmetry, proposed by Reny (1999).
Weak symmetry implies quasi-symmetry. Reny observes that quasi-symmetry may be used in
place of total symmetry to establish the existence of symmetric equilibria in pure strategies.
This section shows that quasi-symmetry, and thus weak symmetry, suffice in place of total
symmetry for several purposes.

A well known property of totally symmetric games is that if in some symmetric strategy
profile one player cannot profitably deviate, then no player can profitably deviate, so the
profile is a symmetric equilibrium. A number of authors have used this property to establish
various conditions under which totally symmetric games have symmetric equilibria.

As Reny (1999) suggests, for pure strategies, the aforementioned property follows from a
condition weaker than total symmetry:

18Nash’s 1950 dissertation largely coincides with the paper published in 1951. In the acknowledgements of
both the paper and the dissertation, Nash mentions, “David Gale suggested the investigation of symmetric
games.” In the introduction to the dissertation, Nash mentions “The main mathematical result is the proof
of the existence in any game of at least one equilibrium point. Other results concern... the existence
of a symmetrical equilibrium point in a symmetrical game.” However, in the body of the paper and the
dissertation, there is no definition of a symmetric(al) game, nor any explicit discussion at all of such games.
His only formal result regarding symmetry is his Theorem 2. One presumes that Nash and Gale were familiar
with von Neumann and Morgenstern’s definition of a totally symmetric game.

The corollary is stated for symmetric, two-player bimatrix games by van Damme (1991, Lemma 9.2.1).
19Regarding that result, Dasgupta and Maskin remark, “This result is well known among game theorists.

We are including a proof here because we have been unable to find a reference.” It seems that they, and
some of their contemporaries, overlooked the connection to Nash’s theorem 2.
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Definition. A game is quasi-symmetric if for all players i and j, Si = Sj, and

u1(x, y, ..., y) = u2(y, x, y, ..., y) = ... = uN(y, ..., y, x) for all x, y 2 S1.

In two-player games, quasi-symmetry is equivalent to symmetry. In games with three or
more players, weak symmetry implies quasi-symmetry, but not the converse.

von Neumann and Morgenstern say that a game is totally unsymmetric if the game is
not symmetric with respect to any permutation apart from the identity. A quasi-symmetric
game with more than two players may be totally unsymmetric.20 (Thus the prefix “quasi”
is apt.) Consequently, the results of the previous section regarding games with symmetries
need not have any bite for quasi-symmetric games. Nonetheless, quasi-symmetry does suffice
in place of total symmetry for several purposes.

In an arbitrary game, let Bi : S ! Si denote player i’s best-reply correspondence,

Bi(s) = argmax

s0i2Si

ui(s
0
i, s�i).

In a game with a common strategy space, consider the restriction of the best-reply corre-
spondence to symmetric strategy profiles: Bd

i (s1) = Bi(s1, ..., s1). Say that Bd
i : S1 ! S1 is

player i’s diagonal best-reply correspondence.
In a quasi-symmetric game, all players share the same diagonal best-reply correspondence,

that is Bd
1 = Bd

j for all players j 2 I. Consequently,

Lemma 7. In a quasi-symmetric game, if s⇤1 2 Bd
1(s

⇤
1), then (s⇤1, ..., s

⇤
1) 2 Sn

1 is a symmetric
equilibrium.

This result is implicit in Reny’s proof of his Theorem 4.1, though he does not explicitly
state it. Of course, because total symmetry implies weak symmetry, which implies quasi-
symmetry, this result remains true in totally or weakly symmetric games.

Proof. In a quasi-symmetric game, s⇤1 2 Bd
1(s

⇤
1) implies s⇤1 2 Bd

j (s
⇤
1) for each player j,

which implies (s⇤1, ..., s
⇤
1) 2 B(s⇤1, ..., s

⇤
1), which is to say that the symmetric strategy pro-

file (s⇤1, ..., s
⇤
1) is an equilibrium.

A number of authors considering totally symmetric games have established conditions
under which there exists a fixed point of the diagonal best-reply correspondence Bd

1 , and
20Begin with a totally symmetric game with more than three players, such as the totally symmetric

extension of the prisoner’s dilemma considered before. Now modify the payoff function as follows. If at least
n�1 players are playing the same pure strategy, then let the payoffs be as in the original game. For all other
strategy profiles, let the payoff of player i be equal to i. If n � 3, then the resulting game has no symmetries
apart from the identity.
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consequently there exists a symmetric equilibrium in pure strategies by the previous argu-
ment. For example, Moulin (1986, p115) shows that in totally symmetric, concave games,
and Vives (1990) shows that in totally symmetric, supermodular games. Because the pre-
vious result holds under quasi-symmetry, the existence results of Moulin and Vives may be
extended from totally symmetric games to quasi-symmetric games.21

The argument in the previous lemma may be extended to mixed strategies. Let ⌃1 denote
the set of mixed strategies for player 1, and let Bd

1 : ⌃1 ! ⌃1 now denote the diagonal best-
reply correspondence for mixed strategies. In a totally symmetric game, if �⇤

1 is a fixed point
of Bd

1 , then (�⇤
1, ..., �

⇤
1) is a symmetric equilibrium in mixed strategies. Reny (1999, Corollary

5.3) seems to suggest that this argument continues to hold replacing total symmetry with
quasi-symmetry again, but that is not quite correct. Instead, it holds under the assumption
that the mixed extension of the game is quasi-symmetric, that is:

Definition. A game is mixed-quasi-symmetric if for all players i and j, Si = Sj, and

u1(x, , ..., ) = u2( , x, , ..., ) = ... = uN( , ..., , x) for all x 2 S1 and  2 ⌃1.

Note that this definition simply replaces the pure strategy y in the previous definition
with the mixed strategy  . Mixed-quasi-symmetry is equivalent to quasi-symmetry of the
game’s mixed extension.

The previous lemma may be extended as follows. In a mixed-quasi-symmetric game,
Bd

1( ) = Bd
j ( ) for each  2 ⌃1 and j 2 I. Consequently,

Corollary 8. In a mixed-quasi-symmetric game, if �⇤
1 2 Bd

1(�
⇤
1), then (�⇤

1, ..., �
⇤
1) 2 ⌃

n
1 is a

symmetric equilibrium.

Thus mixed-quasi-symmetry, or weak symmetry, may be used in place of total symmetry
to establish the existence of symmetric equilibria in mixed strategies. For example,

Theorem 9. Any finite, mixed-quasi-symmetric game has a symmetric equilibrium in mixed
strategies.

21A concave game is one where each Si is a compact, convex Euclidean subspace, and each ui is continuous
in s and concave, or quasi-concave, in si. In such a game, Bd

1 has a fixed point s⇤1 by Kakutani’s theorem.
In a supermodular game, Bd

1 has an increasing selection. That increasing selection has a fixed point s⇤1 by
Tarski’s theorem.

In both cases, if the game is totally symmetric, then (s⇤1, ..., s
⇤
1) is a symmetric equilibrium. The same is

true if the game is quasi-symmetric rather than totally symmetric, by the previous lemma.
Reny (1999, Theorem 4.1) shows the existence of symmetric pure strategy equilibria in games that are

quasi-symmetric, compact, diagonally quasi-concave and diagonally better-reply secure.
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This theorem is a slight generalization of corollary 6. Previous authors have shown that
in a finite game with a common strategy space, there exists a mixed strategy that is a fixed
point of player one’s diagonal best-reply correspondence. The theorem then follows by the
previous corollary.

Proof. Claim: In a finite game with a common strategy space, there exists a mixed strategy
�⇤
1 that is a fixed point of player one’s diagonal best-response correspondence, that is �⇤

1 2
Bd

1(�
⇤
1).

This claim has been proven by Dasgupta and Maskin (1986), via Fan’s lemma. Alter-
natively, note that Bd

1 meets the conditions of Kakutani’s theorem: Fudenberg and Tirole
(1991, Theorem 1.1) prove more generally that ⌃ is a compact, convex, nonempty subset of
a Euclidean space; and B is nonempty-valued, convex-valued, and upper hemicontinuous.
⌃1 and Bd

1 inherit those same properties, so Kakutani’s theorem implies that Bd
1 has a fixed

point �⇤
1.

By the previous corollary, if the game is mixed-quasi-symmetric, then (�⇤
1, ..., �

⇤
1) is a

symmetric equilibrium.

Mixed-quasi-symmetry is a condition on the payoff functions for mixed strategies. It is
desirable to have instead a condition on the payoff functions for pure strategies that implies
mixed-quasi-symmetry. Weak symmetry is such a condition:

Theorem 10. Weak symmetry implies mixed-quasi-symmetry, which implies quasi-symmetry.

The converses are not generally true, quasi-symmetry does not imply mixed-quasi-symmetry,
which does not imply weak symmetry.22 In two-player games, the three conditions are equiv-
alent.

22A network game (Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv, 2010) on a regular graph is mixed-
quasi-symmetric, but need not be weakly symmetric. It is weakly symmetric if the graph is vertex-transitive.
Here I construct a three-player game that is mixed-quasi-symmetric but not weakly symmetric:

Begin with the following rotationally symmetric three-player game: S1 = {0, 1}, u1(s) = s1 + s2 � s3,
u2(s) = s2 + s3 � s1, u3(s) = s3 + s1 � s2. Let {i, j, k} be any permutation of the player set {1, 2, 3}. Notice
that if �j = �k, then the expected payoff of player i is equal to E[�i]. That is true for all i, so the game is
mixed-quasi-symmetric.

Now consider a modification of the game where player 1’s payoff function is replaced with ũ1(s) = s1 +
2s2 � 2s3. Notice that if �2 = �3, then ũ1(�1,�2,�2) = E[�1] + 2E[�2] � 2E[�2] = E[�1], so the modified
game is still mixed-quasi-symmetric. However, it is no longer weakly symmetric: there is no symmetry of
the game that maps player 2 or player 3 to player 1.

It remains unclear what condition on the payoff functions for pure strategies is equivalent to mixed-quasi-
symmetry.
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Proof. That mixed-quasi-symmetry implies quasi-symmetry is immediate, because for each
pure strategy y there exists a mixed strategy  y that places probability one on y, and
consequently  y is payoff equivalent to y.

Here I show that weak symmetry implies quasi-symmetry. Considering players 1 and 2,
weak symmetry implies that there exists a player permutation ⇡ where ⇡(2) = 1, and

u⇡(2)(�) = u2(�⇡(1), ..., �⇡(2)).

Setting � = (x, , ..., ), and noting that ⇡(2) = 1, and ⇡(j) 6= 1 for all other players j 6= 2,
the previous line becomes

u1(x, , ..., ) = u2( , x, , ..., )

as desired. One may similarly show that u2( , x, , ..., ) = ... = uN( , ..., , x).

Dasgupta and Maskin (1986) establish conditions under which equilibria exist in discon-
tinuous, asymmetric games. They seek to further establish conditions under which there
exists a mixed strategy equilibrium that is atomless on the discontinuity set. They establish
that is true in totally symmetric games that meet their other conditions. All three of their
results for totally symmetric games remain true for mixed-quasi-symmetric games.

Quasi-symmetry, and thus weak symmetry, may be used in place of total symmetry for
purposes other than establishing the existence of symmetric equilibria:

Milgrom and Roberts (1994) show that equilibrium comparative statics may be estab-
lished in symmetric games under weaker conditions than in asymmetric games. If the game
is symmetric and S1 is one-dimensional, then the problem of finding symmetric equilibria
in pure strategies reduces to the problem of finding fixed points of the map Bd

1 : S1 ! S1.
That is a one-dimensional fixed point problem. In an asymmetric game, even if each Si is
one-dimensional, the problem of finding equilibria is an n�dimensional, fixed-point problem.
In the general problem, monotonicity of B may be used to establish equilibrium comparative
statics. Milgrom and Roberts show that in the one-dimensional fixed-point problem where S1

is a compact interval, a weaker condition, quasi-monotonicity of Bd
1 , may be similarly used

to establish equilibrium comparative statics.23 They note their result may be applied to
totally symmetric games. It may similarly be applied to quasi-symmetric games. Relatedly,
Plan (2017) shows that in quasi-symmetric games, concavity suffices in place of strategic

23When Bd
1 is single-valued, it is quasi-increasing if it is “continuous but for upward jumps.” Overlooked

by Milgrom and Roberts, Tarski’s intersection point theorem implies the existence of a fixed point for a
quasi-increasing function on a compact interval.
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quasi-complementarity for the purpose of establishing equilibrium comparative statics.
Hefti (2017, Theorem 1) establishes conditions under which a totally symmetric game

has only one symmetric equilibrium. To do so, Hefti considers the diagonal best-response
correspondence Bd

1 , and establishes conditions, relating to the Index theorem, under which
Bd

1 has a single fixed-point. That approach is valid not only in totally symmetric games, but
more generally in quasi-symmetric games.24 Consequently, Hefti’s Theorem 1 continues to
hold replacing the assumption of total symmetry with that of quasi-symmetry.

In general, it is difficult to determine the set of equilibria in an infinitely repeated game.
Cronshaw and Luenberger (1994) “restrict attention to games with n identical agents.” They
show that for such games the set of strongly symmetric equilibria of the infinitely repeated
game has a particularly simple structure. They seem to have in mind the assumption that the
stage game is totally symmetric. However, all of Cronshaw and Luenberger’s mathematical
statements continue to hold assuming only that the stage game is quasi-symmetric.

This section and the previous one have established that weak symmetry suffices in place
of total symmetry for various purposes. That is, in many instances where total symmetry
has been invoked, the implied assumption of anonymity is superfluous. The next section
describes a result for which both weak symmetry and anonymity are necessary.

5 A further implication of total symmetry

This section describes a property of totally symmetric games that does not hold in weakly
symmetric games. Beginning with an n-player game, fix the strategies of all but two players
and consider the resulting game played by the remaining two players. If the original n-
player game is totally symmetric, then the resulting two-player game is symmetric. Related
to this property, Amir (1996), Amir, Jakubczyk, and Knauff (2008), and Hefti (2017) have
established conditions under which totally symmetric games have only symmetric equilibria.
Those results do not extend to weakly symmetric games.

Consider an arbitrary n-player game G. Fix one player j, and some strategy of that
player, sj. Consider the resulting game played by the remaining n � 1 players. That is,
consider a new game ˜G(j, sj) which has a set of n � 1 players ˜I = I\j, strategy space
˜S = ⇥i 6=jSi, and payoff functions ũi :

˜S ! R where ũi(s̃) = ui(s̃1, ..., s̃j�1, sj, s̃j+1, ..., s̃n).
24Hefti refers to that approach as the “Symmetric Opponents Form Approach.” He notes that a number

of other authors have taken this approach in studying symmetric equilibria of symmetric games, including
Salop.
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Proposition 11. If the n-player game G is totally symmetric, then fixing any player j and
strategy sj, the resulting (n� 1)�player game ˜G(j, sj) is totally symmetric.

The same is not true for weakly symmetric games.25

Having fixed one player’s strategy, we may now fix a second player’s strategy, yielding an
(n� 2)�player game which is again totally symmetric. Repeating this procedure, fixing all
but two players strategies, yields a symmetric, two-player game. Consequently, conditions
under which two-player, symmetric games have only symmetric equilibria may be extended
to conditions under which n-player, totally symmetric games have only symmetric equilibria.

Suppose that the n-player game G has an asymmetric equilibria s⇤. For some pair of
players i and j, s⇤i 6= s⇤j . Thus (s⇤i , s

⇤
j) is an asymmetric equilibrium of the resulting two-

player game where the strategy of every other player k /2 {i, j} is fixed at s⇤k, as described
above. If the original game G is a totally symmetric, strictly supermodular game, then the
resulting two-player game is symmetric and strictly supermodular. If a two-player game
is symmetric, strictly supermodular, and has one-dimensional strategy spaces, then it has
only symmetric equilibria.26 Consequently, totally symmetric, strictly supermodular games
with one-dimensional strategy spaces do not have asymmetric equilibria. This result was
originally proven by Amir (1996, p145), and later generalized by Amir, Jakubczyk, and
Knauff (2008). This result does not extend to weakly symmetric, strictly supermodular
games.27 Hefti (2017, Theorem 2) establishes other conditions under which two-player games
do not have asymmetric equilibria, and consequently n-player totally symmetric games do

25For example, in the circular prisoner’s dilemma with n � 3, fix an = 1. In the resulting game with
players {1, 2, ..., n� 1}, player n� 1 has a strategic advantage over the other n� 2 players.

26Given one-dimensional strategy spaces, if s1 6= s2, then either s1 > s2 or s1 < s2. Suppose s1 > s2.
If the game is symmetric and strictly supermodular, then every element of B2(s1) is greater than or equal
to every element of B1(s2). Thus, if s1 > s2, it cannot be that s2 2 B2(s1) and s1 2 B1(s2). The case
where s1 < s2 is similar. This remains true replacing the assumption of strict supermodularity with the
more general assumption that the game has strict strategic complementarities.

27Peitz (1999) remarks that it does not extend to “locally symmetric” games. Local symmetry seems to
coincide with weak symmetry. See footnote 15.

Here I show that a four-player, rotationally symmetric, strictly supermodular game may have an asym-
metric equilibria. Consider the strategy profile (1, 3, 2, 4). Suppose that the best response correspondence
is single-valued and let b = B1. For the profile to be an equilibrium of the rotationally symmetric game, it
must be that

1 = b(3, 2, 4)

3 = b(2, 4, 1)

2 = b(4, 1, 3)

4 = b(1, 3, 2).

It is possible to construct a strictly increasing function b where that is true, because none of the four trios
of strategies that appear on the right hand side are ranked above another.

It remains unclear whether Amir’s result extends to weakly symmetric games with just three players.
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not have asymmetric equilibria. Again, this result does not extend to weakly symmetric
games.

This paper suggests that for many purposes, other than those described in the current
section, the assumption of total symmetry is overly strong. That is, many of the implications
of total symmetry continue to hold under weak symmetry. On the other hand, there is a
sense in which total symmetry is not strong enough. There is an implication of symmetry in
two-player games that does not similarly follow from total symmetry in n-player games: It
is well known that in a symmetric, zero-sum, two-player game, each player gets payoff zero
in equilibrium. However, in a totally symmetric, zero-sum, n-player game, a player may get
a payoff other than zero in equilibrium.28

6 Conclusion

In pure game theory, total symmetry has come to be the most commonly considered concept
of symmetry in n-player games. It seems that may have occurred due to a series of historical
accidents across the first four published sources that consider symmetry in general n-player
games: von Neumann and Morgenstern (1953, originally published in 1944), Nash (1951),
Palm (1984) and Dasgupta and Maskin (1986).29 The present paper shows that many results
that have previously been established for totally symmetric games continue to hold in weakly
symmetric games. Previous work in applied game theory includes prominent models that lie
outside the class of totally symmetric games but inside the richer class of weakly symmetric
games — perhaps that will also be true in future work.

28If such a game is finite, then there is an equilibrium where each of the n-players gets payoff zero, because
a symmetric equilibrium exists. (In a zero-sum game, any symmetric equilibrium yields payoffs of zero.)
However, there may be other equilibrium payoff profiles as well. For example, consider the three-player
game where each player simultaneously chooses left or right; and if all three players choose the same action,
they each get payoff zero, while if only two players choose the same action, they both get payoff �1/2 and
the third player gets payoff 1. That is a totally symmetric, zero-sum game. One equilibrium is (left, right,
right), which yields payoffs (1,�1/2,�1/2).

von Neumann and Morgenstern (1953) did not consider (Nash) equilibrium, but they similarly noted
regarding their solutions concepts, “It must be remembered, however, that the concept of fairness and
similarly that of total symmetry of the game may or may not imply that all individual players can expect
the same fate in an individual play (provided that they play well). For n = 2 this implication did hold, but
not for n � 3!” (p259).

Perhaps there is some more restrictive extension of symmetry from two-player games to n-player games,
that does preserve the zero-payoff implication in zero-sum games.

29In particular, Dasgupta and Maskin’s famous paper seems to have shaped the later discussion of sym-
metry in games. von Neumann and Morgenstern’s group-theoretic discussion of symmetry has been largely
overlooked. Had Dasgupta and Maskin been aware of the relevant portions of the three earlier works, it
seems likely that they would have given a different treatment of symmetry. Weak symmetry was noted by
Palm, and would be sufficient in place of total symmetry for all of Dasgupta and Maskin’s purposes.
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